The wave function of a generic state in a quantum many body system requires an exponential number of parameters. However, the quantum states describing the low energy physics of local Hamiltonians can be well approximated by the so called Tensor Networks that only require a polynomial number of variables. According to Feymann, a quantum computer can be used to simulate any wave function defined on a quantum lattice system. A natural question is how to implement a given Tensor Network in a Quantum Computer. The work proposed is to review the examples known in the literature, find new ones and realize them using the available quantum machines like the ones of IBM Quantum experience.